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1. Introduction

The majority of experiments in optics can be understood on the basis of
Classical Electrodynamics. Maxwell’s theory is perfectly adequate for un-
derstanding diffraction, interference, image formation, and even nonlinear
phenomena such as frequency doubling or mixing. However, many fasci-
nating quantum effects like correlations between photons are not captured,
e.g., the photons in a single mode laser well above the threshold photons are
completely uncorrelated, whereas photons in thermal light have a tendency
to “arrive” in pairs.

This contribution addresses the following questions:
− What is a photon?
− Description and examples of relevant photon states.
− Discussion of basic optical devices and measurements.

2. Nature of light

2.1. HISTORICAL MILESTONES

Isaac Newton (1643 – 1727): Founder of the corpuscular theory.
Christian Huyghens (1629 – 1695): Founder of the wave theory of light.

Thomas Young (1773 – 1829): Independent pioneering work about
Augustin Fresnel (1788 – 1827): waves & interference.

James C. Maxwell (1831 – 1879): Theory of the Electromagnetic Field.
Heinrich Hertz 1888: Discovery of electromagnetic waves.

∗ http://www-tkm.uni-karlsruhe.de (e.g, for previous Erice contributions).
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Figure 1. A perfect Planckian: The T = 2.7K cosmic background radiation. From[14].

Maxwell’s theory of the Electromagnetic Field (EMF) did not only give
a beautiful unification of electric and magnetic phenomena but it also pre-
dicted the existence of electromagnetic waves as undulations of electric and
magnetic fields propagating through space. Wave theory had won a glorious
victory! But then the incomprehensible happened:

Max Planck 1900: Quantization of mode–oscillators.
Phillip Lenard 1902: Difficulties with photoelectric effect.
Albert Einstein 1905: Postulate of light quanta of energy ~ω.
G. I. Taylor 1909: Interference with “single photons”.
A. H. Compton 1923: Photons have E(p) = c|p|.
E.O.Lawrence, J.W.Beams 1927: No photoelectron delay time.
P. A. M. Dirac 1927 Quantum Theory of the EMF.

The era of quantum physics started with Planck’s[1] derivation of the
black body spectrum in terms of quantized mode oscillators which is de-
picted in Fig. 1. The spectral energy density (energy per volume, energy
~ω, polarization degree, and solid angle dΩ) reads

e(~ω, T )d(~ω) dΩ =
(~ω)2

(2πc~)3
~ω

e
~ω

kBT − 1
d(~ω) dΩ. (1)

Lenard’s[2] observations on the photoelectric effect were incompatible
with the predictions of the Maxwell–Theory where energy is distributed
continuously in space. The photocurrent was found to be proportional to
the intenstity I of the light, however the energy of individual electrons did
not depend on I, yet it increased with light frequency. Nevertheless, Lenard
thought that the light does not supply the energy which is necessary to
release an electron but merely triggers the photoelectric emission.
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Figure 2. (1) Triggered photon cascade experiment to produce single photon states. (2)
Mach–Zehnder Interferometer. (3) Number counts in the outputs of the photodetector
MZ1 and MZ2 as a function of the path difference between the arms of the interferometer.
(One channel corresponds to a variation of δ = λ/50). According to Grangier et al.[11].

In 1905 Einstein published three seminal contributions: About Brow-
nian motion, special relativity, and the photoelectric effect. For the latter
contribution entitled Über einen die Erzeugung und Verwandlung des Lichts
betreffenden heuristischen Gesichtspunkt[3] he was awarded the Nobel prize
in 1921. Guided by an ingenious thermodynamic approach of the black
body radiation he got the inspiration that the energy transported by light
is distributed in a granular rather than in a continuous fashion in space
(“darts of energy”[4]). The most direct evidence of the particle nature of
light quanta is provided by the Compton–effect[5].

The existence of light quanta is in apparent contradiction with typical
wave properties like interference fringes. It was expected that such fringes
fade out if the intensity of the incident light becomes smaller and smaller
so that the probability of having more than a single photon in the spec-
trometer becomes negligible. Interference experiments at very low intensity
were carried out in 1909 by Taylor[6] and later, by Dempster and Batho[7],
and by Janossy et al.[9]. With great disappointment all these investigators
reported a null result. This discovery lead Dirac to the famous statement
“a photon interferes (only) with itself”. Since 1985, coherence experiments
with genuine single photon states of light are possible, see Fig. 2.

With a simple but ingenious method Lawrence and Beams[8] studied in
1927 the time variation of the photoelectric emission from a metal surface
illuminated by light flashes of 10−8s duration. It was found that photolectric
emission starts in less than 3×10−9s after the beginning of the illumination
of a potassium surface. From another experiment which was designed to
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Figure 3. Photoelectric detection. The “comb” refers to a the response of a photode-
tector with hight time resolution rather than to the incoming photons. According to
Bachor[38].

investigate beats between two incoherent(!) light sources by photoelectric
mixing Forrester et al.[10] deduced that tdel < 10−10s.

Further milestones are:

R. Hanbury Brown 1954 Discovery of photon bunching.
Kimble, Dagenais, Mandel 1977 Generation of nonclassical light.
R. E. Slusher, B. Yurke 1985 Generation of squeezed states

2.2. WHAT IS A PHOTON?

The photon hypothesis relies on four basic facts:

− Point–like localization of energy.
− Transport of energy and momentum through space with E(p) = c|p|.
− Absence of a delay time for the emission of photoelectrons.
− A photon interferes with itself.

Evidences for the particle nature of the excitations of the EMF are the
photoelectric effect[2] and the Compton effect[5], respectively. The non-
existence of a delay time[8, 10] is less frequently mentioned although it is
equally important as the other properties.

Today our interpretation of photons differs substantially from the orig-
inal idea of small energy “bullets” or “darts”[4]

− Photons are just the energy eigenstates of the EMF.
− The localization arises as the outcome of a measurement which causes

the state of the EMF to “collapse” into an eigenstate of the device as
a result of a position measurement, e.g., the absorption of a photon by
an atom or in a pixel of a CCD–camera.

Although photons (in free space) have a definite energy–momentum re-
lation, photons are not “objects” in the sense of individual, localizable
classical particles. By contrast, they are indistinguishable, nonlocalizable
and obey Bose statistics. A figure like Fig. 3 is dangerous as it pretends
that photons in a light beam have well defined positions. The notion of
classical and quantum particles is intrinsically very different. In particular
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the collapse of the quantum state is foreign to all classical (wave–) theories,
in particular, a localization smaller than the wavelength is not possible.
The nonexistence of a waiting time for the photoelectrons is simply the
consequence of statistics, some come promptly, others come later. This will
be discussed in Section 5.3.

It was left to Dirac[12] to combine the wave– and particle like aspects
of light so that this description is capable of explaining all interference and
particle phenomena of the EMF. We shall follow his traces in Section 4.

For an excellent survey on photons see Paul’s book[32]. Alternative
theories are, e.g., discussed in the Rochester Proceedings from 1972[47].

3. Classical Description of the EMF: Waves

3.1. MAXWELL–EQUATIONS

For our purposes a detailed knowledge how to calculate field configurations
for specific systems in not required. However, we have to know the relevant
dynamical variables of the EMF.

The state of the EMF is described by two (mathematical) vector fields
E,B which are coupled to the charge and current density of matter ρ, j by
the Maxwell–Equations 1

∂E

∂t
− c2curl B = − 1

ε0
j(r, t), div E =

1

ε0
ρ(r, t), (2)

∂B

∂t
+ curl E = 0, div B = 0. (3)

Analogous to the interpretation of Classical Mechanics one may view the
two differential equations (lhs) with respect to time as equations of motion
of the Maxwell field, whereas the rhs–set represents “constraints”. Hence,
from the 6 components of E,B at most 6-2=4 components are independent
dynamical variables at each space point. Therefore, potentials Φ,A are
more appropriate than E,B

E = −Ȧ(r, t)− gradΦ(r, t), (4)

B = curlA(r, t). (5)

In contrast to E,B the potentials A, Φ are not uniquely determined, rather
A → A′ = A + gradΛ(r, t),Φ → Φ′ = Φ − Λ̇(r, t) lead to the same E,B–
fields and, hence, contain the “same physics”. Λ(r, t) is an arbitrary gauge
function. This property is called gauge invariance or gauge symmetry and
it is considered as a fundamental principle of nature.

1 Vectors are set in boldface, electromagnetic fields in caligraphic style.
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In Quantum Optics (and in solid state physics as well), the Coulomb
gauge, divA = 0, is particularily convenient, as the equations for Φ and A

decouple

∆Φ(r, t) = − 1

ε0
ρ(r, t), (6)

∆A(r, t)− 1

c2
∂2A(r, t)

∂t2
= −µ0jtr(r, t), (7)

where

jtr(r, t) = j(r, t)− ε0grad
∂Φ(r, t)

∂t
(8)

denotes the socalled transverse component of the current, div jtr = 0. Some
advantages of the Coulomb gauge are:

− Φ is not a dynamical system, i.e. there is no differential equation with
respect to time, hence, Φ(r, t) follows ρ(r, t) without retardation!

− As div jtr = 0 only 2 of the 3 components of A are independent
variables of the EMF.

3.2. MODES AND DYNAMICAL VARIABLES

In order to extract the dynamical variables of the EMF from Eq. (7) we
decompose the vector potential in terms of modes u`(r)

A(r, t) =
∑

`

A`(t)u`(r), (9)

∆u`(r) + (
ω`
c
)2 u`(r) = 0, divu`(r) = 0, (10)

∫

u∗` (r)u`′(r) d
3r = δ`,`′ . (11)

In addition, there will be boundary conditions for E,B which fix the eigen-
frequencies ω` of the modes labelled by `. (To lighten the notation we omit
the index “tr” from now on). The set of A`(t) represents the generalized
coordinates or dynamical variables of the EMF which obeys the equation
of motion

Ä`(t) + ω2
` A`(t) =

1

ε0
j`(t). (12)

j`(t) is defined in the same way as in Eq. (9) and it can be obtained by
using the orthogonality relations Eq. (11). Note, each mode is equivalent to
a driven harmonic oscillator. A state of the EMF is, thus, specified by the
set of mode amplitudes A`(t0) and their velocities Ȧ`(t0) at a given instant
of time t0.
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A(r, t) is a real field so that u`(r) as well as A`(t) ought to be real.
Nevertheless, the choice of complex modes may be convenient. In particular,
in free space we will use “running plane waves”.

uk,σ(r, t) =
1√
V

εk,σ e
ıkr, (13)

ε
∗
k,σ′ · εk,σ = δσ,σ′ . (14)

εk,σ denotes the polarization vector which, by divu = ık · εk,σ = 0, is
orthogonal to the wave vector k. (Here the notation “transversal” becomes
manifest). The two independent polarization vectors will be labelled by σ =
1, 2. V denotes the normalization volume and, as usual, periodic boundary
conditions implied. As a result, we obtain

A(r, t) =
∑

k,σ

Ak,σ(t) εk,σ e
ıkr =

∑

k,σ

′ (

Ak,σ(t) εk,σ e
ıkr + cc

)

. (15)

As A(r, t) is a real field we must have A−k,σ = A∗
k,σ, i.e. the amplitudes

for k and −k are not independent, only those amplitudes with kz > 0 are
independent dynamical variables. (This is the meaning of the prime in

∑′.
kz = 0 requires additional investigation). Fortunately, this problem can be
circumvented by a redefinition of the Ak,σ and as a result we have[39, 48]

A(r, t) =
∑

k,σ

√

~

2ε0ωk V

(

ak,σ(t) εk,σ e
ıkr + a∗k,σ(t) ε

∗
k,σ e

−ıkr
)

, (16)

E(r, t) = −∂A(r, t)

∂t

=
∑

k,σ

√

~

2ε0ωk V

(

ıωk ak,σ(t) εk,σ e
ıkr + cc

)

, (17)

B(r, t) = curlA(r, t)

=
∑

k,σ

√

~

2ε0ωk V

(

ı(k× εk,σ) ak,σ(t) e
ıkr + cc

)

. (18)

In order to make the ak,σ dimensionless and in anticipation of the quantum
treatment ~ has been “smuggelt in”. In contrast to Eq. (12) ak,σ(t) obeys
the first order differential equation

dak,σ(t)

dt
+ ıωk ak,σ(t) = ı

√

1

2ε0~ωk

jk,σ(t), (19)

which has been already used performing the time–derivative of A(r, t) in
Eq. (17). (The contribution from jtr drops out in the final result).
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From the fields we obtain the energy (Hamiltonian) of the radiation
field (including the interaction with the current) and the momentum

H =

∫
(

ε0
2

E2
tr(r, t) +

1

2µ0
B2(r, t)− jtr(r, t) A(r, t)

)

d3r

=
∑

k,σ

~ωk a
∗
k,σak,σ −

√

~

2ε0ωk

(

j∗k,σ(t) ak,σ + cc
)

, (20)

P =

∫
(

1

µ0
Etr(r, t)×B(r, t)

)

d3r =
∑

k,σ

~ka∗k,σak,σ. (21)

(In contrast to most treatments of the subject no efforts have been made
to preserve the “natural sequence” of the amplitudes ak,σ, a

∗
k,σ. Potential

energy/momentum contributions from the scalar potential to Eqs. (20-21)
have been omitted, see Kroll’s article[48].)

The complex amplitudes ak,σ represent the dynamical variables of the
EMF. Its real and imaginary parts are called quadrature amplitudes

ak,σ = X
(1)
k,σ + ıX

(2)
k,σ, (22)

which (apart from numerical factors) are the analogues of position and
momentum of a mechanical oscillator.

Example:
In free space (without current source) the complex amplitudes of a single
mode with the initial condition a(t = 0) = a0 reads

a(t) = a0 e
−ıωt, (23)

X1(t) = +<a0 cos(ωt) + =a0 sin(ωt), (24)

X2(t) = −<a0 sin(ωt) + =a0 cos(ωt). (25)

Together with Eqs. (17,18) and k = (k, 0, 0), εk,σ = (0, 1, 0) this field
describes a linearly polarized plane wave propagating along the x–direction.

3.3. SPECIAL STATES OF THE EMF

There are two classes of states of the classical EMF:

− Deterministic states: ak,σ(t) are specified for all modes at time t0.
− Random (stochastic) states with a probability distribution P ({ak,σ}, t).
In radio physics these states are termed signals and noise. Prior to the
advent of the laser, the only possibility to produce radiation which is corre-
lated over some space–time domain was to filter black body radiation with
respect to frequency and spatial directions.
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a(t) = a0 e
−ıωt, (26)

P (a, t) = δ(a− a(t)). (27)

P (a) = δ(|a|2 − |a0|2). (28)

P (a) =
1

πIav
e−|a|

2/Iav , (29)

Iav = < |a|2 > . (30)

P (a) ∝ e−F (a,τ), (31)

F (a, τ) = τ
1

2
|a|2 + 1

4
|a|4. (32)
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Figure 4. Model probability distributions for the complex field amplitude a of a
single mode. Ideal Laser (a), amplidute stabilized laser with phase fluctuations (b),
Gaussian (=thermal) noise (c). (d) Laser model which includes both amplitude and
phase fluctuations according to a “phase transition” far from equilibrium. F (a, τ) is a
“Ginzburg–Landau free energy” and τ is the pump parameter[33].
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4. Quantum Theory of Light: Photons

4.1. CANONICAL QUANTIZATION

There are two ways to construct a quantum version of classical theory (if at
all possible !). The first one is based on the Lagrangian formulation of the
classical theory and it uses the Feyman path integral. We shall follow, how-
ever, the second, conventional “trail” called canonical quantization which is
based on a Hamiltonian form, state vectors, and the Schrödinger equation.
Here we have to perform the following steps:

− Classical theory in Hamiltonian form, i.e. identify (real) canonical vari-
ables pj , qk with Poisson–brackets {pj , qk} = δj,k. (All other brackets
being zero, regardless of components j, k). Rewrite all physicall quan-
tities (=observables) in terms of canonical variables.
To bring a classical theory in Hamiltonian form (if possible) one has to
begin with a Lagrangian formulation. Canonical momenta are identical
with “generalized momenta” defined as derivative of the Lagrangian
with respect to the generalized coordinates.

− States (more precise pure states) are described by (normalized) state
vectors |ψ〉 which are elements of a Hilbert space H with a scalar
product.

〈ψ1|ψ2〉 = 〈ψ2|ψ1〉∗. (33)

− “Quantization” is obtained by the translation rule

{A,B} → ı

~

[

Â, B̂
]

,
[

Â, B̂
]

= ÂB̂ − B̂Â. (34)

In particular we have for canonical variables

[p̂j , q̂k] = −ı~δj,k. (35)

Commutators between the p’s or between the q’s themselves vanish.
− The translation rule for the operators which correspond to classical

observables G(p, q, t) are

Ĝ = Gcl(p = p̂, q = q̂, t). (36)

(However, there may be ambiguities with noncommutating operators.

Ĝ has to be hermitian.)
− Values of observables are defined as expectation values of the corre-

sponding operators:

〈G〉 = 〈ψ|Ĝ|ψ〉 = 〈ψ|ψ′〉, (37)

where |ψ′〉 = Ĝ|ψ〉.
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− Dynamics: Initially, the system is supposed to be in state |ψ0〉 =
|ψ(t0)〉. Then, sequence of states |ψ(t)〉 which the system runs through
as a function of time is governed by the Schrödinger equation

ı~
∂|ψ(t)〉
∂t

= Ĥ|ψ(t)〉, (38)

where Ĥ denotes the Hamiltonian (=energy) of the system. Note,
Eq. (38) holds not only for non–relativistic particles but also for pho-
tons!

− States vectors |ψ〉 describe pure states with zero entropy. They are the
analoga of the ideal mechanical states with fixed q, p or the ideal states
of the classical EMF with fixed ak,σ (“signals”).
The counterparts of the classical statistical states, e.g., thermal radia-
tion Eq (29), are called mixed states. They have nonzero entropy and
are described by a density operator ρ̂

〈G〉 = trace (ρ̂ Ĝ). (39)

4.2. QUANTUM OPTICS

The quantum version of the EMF together with a (nonrelativistic) theory
of matter is called Quantum Optics. To follow the scheme outlined in the
previous section we have to bring the Maxwell–Theory into a Hamiltonian
form. This is, however, almost trivial because the EMF is dynamically
equivalent to a system of uncoupled harmonic oscillators with generalized
“coordinates” A`, see Eq. (12). We guess the Lagrangian

L ∝
∑

`

1

2
Ȧ2
` −

ω2
`

2
A2
` +

1

ε0
j`(t)A` (40)

=

∫
(

ε0
2

E2
tr(r, t)−

1

2µ0
B2(r, t) + jtr(r, t) A(r, t)

)

d3r. (41)

The canonical variables are Q` = A`, P` = Ȧ` and the Hamiltonian is
obtained from H = PQ̇− L.

For complex modes, as used in Eqs. (16–18), each amplitude contains
two real variables X1, X2 which (apart from numerical factors) correspond
to canonical momentum and position, (p =

√
2m~ωX2, x =

√

2~/mωX1,
{p, x} = 1). The complex amplitudes obey the Poisson bracket relations

{ak,σ , a∗k′,σ′} =
ı

~
δk,k′ δσ,σ′ . (42)
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Quantization is obtained by replacing the classical amplitudes ak,σ, a
∗
k,σ

by “ladder operators” âk,σ, â
†
k,σ with commutation relations

[

âk,σ, â
†
k′,σ′

]

= δk,k′ δσ,σ′ . (43)

Field operators, Hamiltonian, and the momentum operator are (in the
Schrödinger picture)

Â(r) =
∑

k,σ

√

~

2ε0ωk V

(

âk,σ εk,σ e
ıkr + â†

k,σ ε
∗
k,σ e

−ıkr
)

, (44)

Ê(r) =
∑

k,σ

√

~

2ε0ωk V

(

ıωk âk,σ εk,σ e
ıkr + cc

)

, (45)

B̂(r) =
∑

k,σ

√

~

2ε0ωk V

(

ı(k× εk,σ) âk,σ e
ıkr + cc

)

. (46)

Ĥ =
∑

k,σ

~ωk â
†
k,σâk,σ −

√

~

2ε0ωk

(

j∗k,σ(t) âk,σ + hc
)

, (47)

P̂ =
∑

k,σ

~k â†
k,σâk,σ, (48)

The (infinite) zero point energy which arises from the noncommutativity of

the âk,σ, â
†
k,σ operators has been omitted in the Hamiltonian as this has no

influence on the dynamics of the EMF. The zero point fluctuations of the
EMF, however, are still present in the fields, as we shall see later.

As it is well known, the stationary states of a (free) harmonic oscillator,

|n〉, n = 0, 1, 2 . . ., are the eigenstates of the number operator N̂ = â†â.
In addition, they are are nondegenerate, orthogonal, and normalizable,
〈m|n〉 = δm,n. The action of the â, â†–operators on these states is

â†â|n〉 = n|n〉, (49)

â|n〉 =
√
n|n− 1〉, (50)

â†|n〉 =
√
n+ 1|n+ 1〉. (51)

These operators are also called “ladder operators” because repeated op-
eration on a particular energy eigenstate creates the “ladder” of all other
states, with â† we climb up, whereas with â we climb down the ladder.

The states of the infinite set of mode oscillators of the EMF is, thus,
labelled by the (infinite set of) quantum numbers {nk,σ} which individu-
ally can take on different nonnegative integers. These states describe the
stationary states of the free EMF |{nk,σ}〉 and their time dependence is,
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Figure 5. Equivalence of a system of N (noninteracting) bosons with single–particle
energies ε` and occupation numbers n` and an infinite (uncoupled) set of harmonic oscil-
lators with frequencies ω` = ε`/~. Note that the zero–point energies of the oscillators are
omitted. Dots symbolize particles, crosses excited states, respectively. N = 6. According
to Ref.[49]

as usual, obtained by an exponential factor exp(−ınωt) for each mode.
All other states can be represented as a superposition of these number
states, which, therefore, represent a natural basis for the description of the
quantum states of the EMF.

For a wide–range introduction see Scully and Zubairy’s book on Quan-
tum Optics[35].

4.3. OSCILLATORS AND PHOTONS

Dirac[12] has made the important observation that

. . . a system of noninteracting bosons with single particle energies ε`
is dynamically equivalent to a system of uncoupled oscillators and vice
versa. The two systems are just the same looked at from two different
points of view.

Here, dynamic equivalence implies that all states of an N–boson system
which are conventionally described by a symmetric wave function are equally
well described in the “oscillator picture”, where each single particle state
with energy ε` correponds to an oscillator with frequency ω` = ε`/~. Re-

markably, the commutation relations [â`, â
†
`′ ] = δ`,`′ between the ladder

operators are fully equivalent to the permutation symmetry of the boson
wavefunction, and, fortunately, a great deal of notational redundancy in the
description of a many–body system is removed. In addition, all operators in
the particle picture (lhs of Fig. 5) can be translated into operators acting on
the oscillator states. These operators are conveniently expressed in terms
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of ladder operators and contain products with an equal number of âk,σ and

â†
k′,σ′ operators.
The union of all sets of N = 1, 2 . . . particle subspaces plus the N = 0

“no particle” vacuum state is called Fock space. The number states |{n`}〉
are the eigenstates of the particle number operator

N̂ =
∑

`

â†` â`. (52)

Now, the particle number itself becomes a dynamical variable and we can
even describe states which are not particle number eigenstates of the sys-

tem. â†`, â` are called particle creation and destruction operators because
they change the number of particles by one. The Fock representation is
also called occupation number representation or “second quantization”. It
is much more flexible than the original formulation with a fixed particle
number.

The bosons corresponding to the quantized oscillators with ` = (k, σ)
are called photons. Photons behave very different from massive particles
like electrons. They can be created and annihilated arbitrarily and they
are not localizable. This will become obvious by the discussion of various
examples in the next sections.

Example:
The momentum operator (in one dimension) is translated according to

N
∑

j=1

p̂j →
∑

`,`′

〈`′|p̂|`〉 â†`′ â`. (53)

` labels any set of single particle states. Evaluate the expectation value of a
single particle operator for both the wave–function and occupation number
representation for N = 3 particles! (The full advantage of the occupation
number representation will really show up if interaction of particles are
included.)

4.4. SPECIAL PHOTON STATES

In the following we shall discuss some selected states of the EMF with
respect to the expectation values of the fields, energy, and momentum.
The physically relevant states cannot be eigenstates of the electrical field
operator Ê as these have infinite energy. (Ê corresponds to the position (or
momentum) of a mechanical oscillator).

The “quantum unit” of the electrical field is E0 =
√

~ω/2ε0V . For green
light, λ = 500nm, and a quantization volume of V = 1cm3, E0 ≈ 0.075V/m,
whereas, in a microresonator of linear dimension 1µm, E0 ≈ 7.5× 104V/m!
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4.4.1. n-photons in a single mode
We consider n photons in a single mode with k = (k, 0, 0) and linear
polarization along y–direction εk,σ = (0, 1, 0). |n〉 is, of course, an eigenstate
of the photon number operator Eq. (52). (Mode indices k, σ are omitted,
for brevity).

Without a driving current source this state is an eigenstate of the
Hamiltonian with energy ~ωn and it evolves in time according to

|n, t〉 = |n〉 e−ıωnt. (54)

In addition, this state is also a momentum eigenstate with eigenvalue n~k,
Eq. (48). However, |n〉 is not an eigenstate of the electrical field operator,

Eq. (45), because âk,σ, â
†
k,σ changes the number of photons by ±1. The

expectation value of the electrical field operator reads

〈n, t|Ê(r)|n, t〉 = 0, (55)

〈n, t|Ê2(r)|n, t〉 = E20 (2n+ 1). (56)

Certainly, such a state does not correspond to a classical sinusoidal wave,
instead it is pure “quantum noise”. Note, even in the vacuum state, |0〉,
zero point fluctuations are present.

4.4.2. Single photon wave packet
We consider a superposition of single photon states refering to different
modes (but with the same polarization).

| φσ(k), t >=
∑

k

φσ(k) e
−ıωkt |1k,σ〉, (57)

where φσ(k) is an arbitrary normalizable function which, with some care,
may be interpreted as a wave function of a photon (-wave packet) in
momentum space. However, there is no reasonable photon position rep-
resentation[40]. The question of localization of photons is discussed,e.g., by
Clauser[50].

A special case is the superposition of just two modes. Such a “two
colour state” can be created by a simultaneous excitation of two almost
degenerate (atomic) states by a short laser pulse. If the bandwidth of the
laser pulse embraces both components a coherent superposition of the two
atomic states is created, which decays spontaneousely in a single photon
“wave packet” state. Experimentally, this phenomenon shows up in the
form of “quantum beats”, see Fig. 6.
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Figure 6. Quantum beats between a coherently prepared population of excitons and
biexcitons in AlGaAs quantum well. According to Pandtke et al.[43].

4.4.3. Coherent states (ideal single mode laser)
We are searching for a state, in which the fields vary sinusoidally in space
and time with E–uncertaincy as small as possible, i.e., have time indepen-
dent uncertaincies in the quadrature amplitudes with ∆X1 = ∆X2 = 1/2
and ∆X1∆X2 = 1/4. These states were already known by Schrödinger[13]
and they correspond to a displaced Gaussian ground state wavefunction
whose time evolution is depicted in Fig 7. In dimensionless quantities, we
have

ψ(x, t) = (π)−1/4 exp

[

−(x− xc(t))2
2

]

eıxpc(t) eıϕ(t). (58)

xc(t) and pc(t) are the solutions of the classical equations of motion of the
oscillator and ϕ(t) is a time dependent phase.

In number representation, these states are given by (without the ϕ(t)–
term)

|α〉 = e−
1
2
|α|2

∞
∑

n=0

αn√
n!
|n〉, α = xc + ıpc. (59)

Nowadays, these states are called coherent states, Glauber states, or just
α–states. Glauber[15] was the first who recognized their fundamental role
for the description of laser radiation and coherence phenomena.

The α– states have a number of interesting properties:

− |α〉 is an eigenstate of the destruction operator

â|α〉 = α|α〉, (60)

where α is an arbitrary complex number.
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Figure 7. Time development of the coherent state wave function.

− α–states can be generated by the unitary “displacement” operator D̂

|α〉 = D̂(α)|0〉, (61)

D̂(α) = eαâ
†−α∗â = e−

1
2
|α2|eαâ

†

e−αâ, (62)

D̂† â D̂ = â+ α. (63)

− The time dependence (even with a classical external current source) is
obtained just by replacing α→ α(t), where

| α, t〉 = eıϕ(t) | α(t)〉, (64)

Real and imaginary parts of α(t) = xc(t) + ıpc(t) correspond to the
position and momentum of a classical oscillator. For a free oscillator
α(t) = α e−ıωt. (Phase ϕ(t) has no influence on the “physics”).

− Although the α–eigenvalues form a continuous spectrum, the |α〉 states
are normalizable but they are not orthogonal. Moreover, the set of |α〉
states is complete (overcomplete) and forms a convenient basis for an
“almost classical description” of laser physics.

For further properties see e.g., Scully and Zubairy[35] or Louissell[36].
Expectation values and uncertaincies of the electrical field and pho-

ton number and the probability to measure n photons are (omitting the
polarization index)

E(r, t) = 〈α(t)|Ê(r)|α(t)〉 = −2E0|α| sin(kr− ωkt+ φ), (65)

(∆E)2 = E20 , (66)

〈N̂〉 = | α |2= n̄, (∆N̂)2 = 〈N̂〉, (67)

pn = |〈n|α〉|2 = e−n̄
n̄n

n!
. (68)
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α = |α| exp(ıφ). Note, the relative amount of fluctuations in the electrical
field decreases with increasing amplitude, see Fig. 9. pn denotes a Pois-
sonian distribution with mean photon number n̄ = |α|2 and uncertainty
(∆n)2 = n̄. Thus, in a coherent state photons behave like they were uncor-
related classical objects! In contrast to naive expectations, the photons in
a (single mode) laser (and well above the threshold) “arrive” in a random
fashion, in particular they do not “ride” on the electrical field maxima.

How to generate α–states? As α–states are eigenstates of the (nonher-
mitian) destruction operator â, there is no corresponding observable and
“measuring apparatus”! However, α–states can be simply generated from
a classical current source

Ĥ = ~ωâ†â−
[

f(t)â† + f∗(t)â
]

, (69)

where f(t) ∝ j(t). Nevertheless, it was a great surprise that the light–
matter interaction in a laser (well above the threshold) could be modelled
in such a simple way.

The amplitude of the electrical field of a laser may be well stabilized
by saturation effects, but there is no possibility to control the phase, i.e., a
more realistic laser state would be described by the density operator

ρ̂ =

∫

dφ

2π
| α〉〈α |=

∑

n

pn |n〉〈n|. (70)

This state is made up of an (incoherent) superposition of n–photon states
with a Poissonian distribution. A model of laser light with a finite linewidth
which is caused by phase diffusion has been given by Jacobs[16].

Problem:
P1: Verify that Eqs. (58,64) are solutions of the time–dependent Schrödinger

equation of the (driven) harmonic oscillator.

4.4.4. Squeezed states
Squeezed states correspond to wave functions which have an uncertainty
in one of the quadrature amplitudes smaller than for the groundstate. A
harmonic oscillator has the pecularity that any wave function will repro-
duce itself after the classical oscillation time T = 2π/ω, moreover, there
is an exact mirror image at t = T/2, see Fig. 8. In particular, we will
study Gaussian wave packets which initially are minimum uncertainty wave
packets with ∆X1∆X2 = 1/4, but ∆X1 < 1/2, ∆X2 > 1/2 (or vice versa).

Ψ(x, t) = exp

(

−x
2

2
w(t) + xv(t) + u(t)

)

. (71)
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Figure 8. Time development of a squeezed state wave function.

u(t), v(t), and w(t) can be complex. These parameters follow from an
insertion in the time dependent Schrödinger equation. We leave that as
an exercise.

Squeezed states are characterized by two complex variables, usually
termed α and ξ and they can be constructed by first operating with the
unitary squeezing operator Ŝ(ξ) on the vacuum and then by shifting with

D̂(α).

|α, ξ〉 = D̂(α) Ŝ(ξ) |0〉, (72)

Ŝ(ξ) = e
1
2(ξ

∗â2−ξ(â†)2), (73)

Ŝ†(ξ) â Ŝ(ξ) = cosh(r)â− e−2ıθ sinh(r)â†, (74)

where ξ = r exp(ıθ). (Some authors prefer a reversed sequence of D̂(α) and

Ŝ(ξ)). Squeezed states are also the eigenstates of a transformed destruction

operator b̂[18]

b̂ = µâ+ νâ†, µ = cosh(r), ν = e−2ıθ sinh(r, ) (75)

b̂|β〉 = β|β〉, (76)

β = α cosh(r) + α∗e−2ıθ sinh(r), (77)

〈N̂〉 = |α|2 + sinh2(r), (78)

(∆N)2 = | α cosh(r)− α∗eıθ sinh(r) |2 +1

2
sinh2(2r). (79)

For moderate squeezing the photon distribution function is similar to a
Poissonian, but with a narrower width, see e.g., Bachor[38] (p. 234).

Squeezed states can be generated by various nonlinear processes, e.g.
degenerate parametric amplification of an initial coherent (=laser) state.

Ĥpar = ~ωâ†â− k
[

eı(ωt+φp) â2 + hc
]

. (80)

Er2003-Photons.tex; 16/09/2003; 12:19; p.19



20

Figure 9. Contours and time dependence of the electrical field for (a coherent state),
squeezed state with reduced quantum noise in X1, and (c) a sqeezed state with reduced
noise in X2. According to Caves[19].

In this model, the pump at ωp = 2ω is treated as a classical source; the
coupling constant k is proportional to the second order susceptibility χ2 of
the nonlinear crystal. An initial α–state evolves with α(t) = α exp(−ıωt)
and ξ(t) = g exp[−ı(ωt + φp − π/2)]. Note, squeezing is sensitive on the
phase of the pump.

A nice review of squeezed states with applications has been given by
Walls[21], for details see the articles by Stoler[17], Yuen[18], and Caves[19].
Communication by squeezed light has been discussed by Giacobino et al.[22].

Problems:
P2: Calculate the functions w(t), v(t), u(t) in Eq. (71).

P3: Show that b̂, b̂† are Bose operators, i.e., [b̂, b̂†] = 1.
P4: Which property must the energy spectrum of a system have that its

state reproduces after a finite time? (See also Chergui’s contribution
in this book and Ref.[44]).

P5: Are there photons in a static magnetic field? (Groundstate of Eq. (47)).
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Figure 10. Photon count distribution for a single mode laser (L), thermal light (G),
and a superposition of both (S). According to Arecchi[51].

4.4.5. Thermal (chaotic) photon states
A single mode of thermal (black body) radiation is described by a statistical
operator

ρ̂ =
1

Z
e−βĤ =

∞
∑

n=0

bn | n〉〈n |, (81)

bn =
n̄n

(n̄+ 1)n+1
=

1

1 + n̄

(

1 +
1

n̄

)−n

, (82)

〈N̂〉 = tr(ρ̂ N̂) =
1

eβ~ω − 1
= n̄, (83)

(∆N̂)2 = n̄(n̄+ 1). (84)

β = 1/(kBT ), Z = 1/(1 − exp(−β~ω)) is the partition function, bn the
Bose–Einstein photon distribution (geometric sequence), and n̄ is the mean

photon number in the mode. In contrast to a coherent state ∆N̂/n̄→ 1 for
n̄→∞, see Fig. 10.

5. Optical devices and measurements

5.1. PHOTODETECTORS

In a classical description the electrical current of a photoelectric device like
a photocell, a photomultiplier, or a photodiode is proportional to the light
intensity (energy density) averaged over a cycle of oscillation

JPD = ζI(t), (85)

I(t) = < E(t)2 >cycl= E(−)(t) E (+)(t). (86)

(A factor 1/2 has been included in the definition of < . . . >cycl). E(±) de-
note the positive(negative) frequency parts of the electric field (polarization
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properties and space variables omitted for simplicity)

E(t) =
∫ ∞

0

(

E(+)(ω) e−ıωt + E(−)(ω) e+ıωt
) dω

2π
. (87)

For a free field E (±) are identical with the first(second) terms of Eq. (17).
(Note also the sign convention.) For a stochastic field, the product E (−)E(+)

has to be additionally averaged on the different realizations of the ensemble.
In praxis ζ includes the (quantum) efficiency of the photodetector, too.

In a quantum treatment, the response of the detector arises from the
ground state of the atoms in the photocathode to highly excited quasi–
free states by absorption of photons. Initially, we have for the combined
system “atom plus EMF” |i >= |a, {n} >. The electrical dipole interaction
Ĥdip = −eÊr induces transitions to final states |f >= |b, {n′} >. With the
golden rule and summing over all possible final states, we have for the total
transition rate

p(t) = ζ〈Ê(−)(r, t)Ê(+)(r, t)〉, (88)

where Ê(±) denote the creation/destruction parts of the electrical field oper-
ator (in the Heisenberg picture) and ζ includes the atomic dipole transition
matrix element. Implicitly, we shall assume a perfect photocathode with
unit quantum efficiency so that each absorbed photon causes an atom in
the phototube to emit an electron and register a single count during times
t, t+ dt.

A good presentation of the quantum theory of a photodetector has been
given by Glauber in the Proceedings of the Les Houches[45] and Fermi
summerschools[46].

5.2. INTERFEROMETERS

Interferometers are devices to measure the correlation of the EMF between
different space–time points. The prototype is the Young double slit inter-
ference experiment which is depicted in Fig. 11. Thermal light from a point
source is rendered parallel by a lens, passes through a wavelength filter, and
then falls on a screen which contains two slits or pinholes (as we assume for
simplicity). Interference fringes show up on a second screen placed on the
right of the first screen, many wavelengths apart. In the following discussion
we shall ignore complications arising from the finite source diameter and
consequent lack of perfect parallelism in the illuminating beam, diffraction
effects at the pinholes (or slits), etc., in order that attention be focused on
the properties of the incident EMF rather than on details of the measuring
device.
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Figure 11. Arrangement of components for an idealized Young’s interference experi-
ment. Interferogram shown in the limit of infinitely small slits and λ¿ d¿ L. Gaussian
spectral filter F .

Let E(r, t) be the electrical field of the radiation at point r on the
observation screen at time t. This field is a superposition of the incident
field at points r1, r2 at earlier times t1, t2,

E(r, t) = u1E in(r1, t1) + u2E in(r2, t2), (89)

t1 = t− s1/c, t2 = t− s2/c. (90)

Coefficients u1, u2 depend on the geometry and they are purely imaginary
since the secondary waves radiated by the pinholes (or slits) are π/2 out of
phase with the primary beam. For simplicity, we consider identical pinholes
and approximate u1 = u2 = u0 =const.

The (cycle averaged) intensity of light at position r can be expressed in
terms of the (first order) correlation function G1(r2, t2; r1, t1)

I(t) ∝ G1(1, 1) +G1(2, 2) + 2<G1(2, 1), (91)

G1(r2, t2; r1, t1) = 〈Ê(−)
(r2, t2)Ê

(+)
(r1, t1)〉, (92)

where G1(2, 1) is short for G1(r2, t2; r1, t1) etc. It is seen from Eq. (91) that
the intensity on the second screen consists of three contributions: First two
terms represent the intensities caused by each of the pinholes in the absence
of the other, whereas the third term gives rise to interference effects.

For a symmetric configuration (equal slit width, homogeneous illumi-
nation, G1(1, 1) = G1(2, 2))) the visibility of the fringes is given by the
magnitude of the normalized correlation function g1(1, 2)

V =
Imax − Imin
Imax + Imin

= |g(2, 1)|2, (93)

g1(r2, t2; r1, t1) =
G1(r2, t2; r1, t1)
√

G1(1, 1)G1(2, 2)
. (94)

Coherence (i.e. the possibility of interference) of light as measured with the
double slit experiment is therefore a measure of correlation in the EMF.
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Figure 12. Sketch of the Michelson interferometer (left) and Michelson stellar interfer-
ometer (right). With these instruments the temporal and spatial correlation of the EMF
can be measured independently. According to Bachor[38].

The Michelson interferometers – as depicted in Figs. 12 – are even better
suited to investigate coherence properties as these instruments separately
measure the temporal and spatial dependencies of G1(2, 1).

Prior to the invention of the laser, coherent light was made out of
“chaotic” radiation by (wave length) filters and apertures. Here, the visi-
bility in the Michelson interferometers vanishes (and remains zero!) if the
distance between the arms becomes larger than the (longitudinal) coherence
length lcoh = ctcoh (point like source of spectral width ∆λ) or larger than
the (transversal) coherence diameter dcoh (monochromatic source of angular
diameter ∆θ)

Coherence time: tcoh = 2π
∆ω =

λ20
c∆λ

Coherence diameter: dcoh = 2π
∆k = 1.22 λ

∆θ

The numerical factor of 1.22 holds for a circular light source. Note, the
vanishing of the interference pattern is not the result of interference but of
the shift of individual patterns which are produced independently by each
frequency component or each volume element of an extended source[41].

The first star which was measured by Michelson and Pease with the
20ft (=6m armlength) stellar interferometer at Mt. Wilson observatory was
the supergigant Betelgeuze in the stellar configuration of Orion (∆θ =
43×10−3 seconds of an arc). Turbulence in the atmosphere severely affected
these measurements and all efforts to increase the armlength proved to be
unsuccessful. Hence, in total only 6 stars could be studied.

Examples:

red Cd–line: λ0 = 643.8nm, ∆λ = 0.0013nm, lcoh = 32cm.
sun: λ0 = 2.4m, ∆θ = 32′, dcoh= 316m.
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Figure 13. First order coherence functions as a function of time. (Left:) Two modes with
ωj = (1 ± 0.05)ω0 (left) and (right:) many uncorrelated modes with a “box” spectrum
centered at ω0 and full width ∆ω = 0.1ω0.

5.2.1. Examples for G1

We study two examples for the (first order) classical coherence functions.

a) Single mode (deterministic/stochastic) field.

G1(r2, t2; r1, t1) =< |ak,σ|2 > exp (−ı [k(r2 − r1)− ωk(t2 − t1)]) (95)

Obviously, this correlation function is (apart from the numerical value of
< |ak,σ|2 >) the same for a deterministic and a stochastic single mode field
and displays maximum contrast.

b) Many statistically independent modes (of equal polarization) and inten-
sity profile: I(ωk) = |E(ω)|2, < â∗

k′,σ′ ak,σ >= I(ωk)δk,k′δσ,σ′ .

E(+)(r, t) =
∑

k

ak,σ e
ı(kr−ωkt), (96)

G1(r2, t2; r1, t1) =
∑

k

I(ωk) e
−ı[k(r2−r1)−ωk(t2−t1)]. (97)

In particular, we have at the same space point, r2 = r1 = r, (as measured
by a Michelson interferometer)

G1(t2 − t1) = G1(r, t2; r, t1) =

∫ ∞

0
I(ω) eıω(t2−t1)

dω

2π
(98)

For a Gaussian line centered at ω0 > 0

I(ω) = I0 e
−
(ω−ω0)

2

2(∆ω)2 , (99)

G1(t) =
√
2I0∆ω e

−
(∆ωt)2

2 eıω(t). (100)

Some examples are depicted in Figs. 11 and 13.
Concerning their coherence properties, the filtered many mode field is

virtually indistinguishable from the single mode field provided t < tcoh.
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(This follows also from the Wiener–Khinchine theorem.) The same rea-
soning holds for filtering within various directions in k–space by apertures
(spatial coherence).

NB: A convenient model to describe wide–band stochastic processes is
“white noise”, I(ω) =const. This leads to completely uncorrelated fields
with no interference fringes.

Problem:
P6: Study the case of two statistically independent modes of equal intensity

and discuss the interference pattern for the Na-D doublett λ0 = 589nm,
∆λ = 0.6nm (Fizeau 1862).

5.3. INTENSITY CORRELATIONS: HANBURY–BROWN & TWISS EFFECT

In the previous section we considered first order field correlation. For fields
with identical spectral properties the classical and quantum treatments
leads to the same result. This can be different when studying intensity
(=photon) correlations.

A bit of history: The intrinsic problems of the Michelson stellar interfero-
meter – mechanical instability at armlength longer than 6m, and the effect
of atmospheric turbulence, were overcome by the invention of the intensity
interferometer. The idea dates back to 1949 where R. Hanbury Brown, a
radio astronomer at Jodrell Bank, was trying to design a radio interfer-
ometer which would solve the intriguing problem of measuring the angular
size of the most prominent radio sources: Cygnus A and Cassiopeia A. If,
as some people thought at that time their angular size is as small as the
largest visible stars, then global base lines would be needed and a coherent
superposition of the signals would be impossible in praxis (around 1950!).

The new and unconventional idea was to correlate (low frequency)
intensities instead of superimposing (high frequency) amplitudes. First,
a pilot model was built in 1950 and was tested by measuring the angu-
lar diameter of the sun at 2.4m wavelength, and, subsequently, the radio
sources Cygnus A and Cassiopeia A. The intermediate–frequency outputs
of the completely independent superheterodyne receivers were rectified in
square law detectors and bandpass filtered (1 . . . 2.5KHz). Then, the LF
outputs were brought together by radio links (or telefone!). After analogue
multiplication of the LF signals and integration, the correlator output

Gcl
2 (r2, t2; r1, t1) = 〈I(r2, t2) I(r1, t1)〉, (101)

displayed the expected correlations, see Fig. 14. (A constant term has
been subtracted by LF bandpass filtering so that G2(2, 1) → 0 for large
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Figure 14. (a) Sketch of the RF interferometer at λ = 2.4m wavelength. (b) Output
of the individual receivers A,B and correlation C showing the transit of a radio source
through the arial beam. (c) Normalized correlation function for the radio source Cygnus
A which consists of two almost equal components with an angular diameter of 45” and
a separation of 1’25”. According to Hanbury Brown[42].

separation of r2 and r1)). However, to the great disappointment of the
investigators, the adventure was over at a separation of less than 5km.
This experiment could have been done by conventional technique!

For many independent modes, Eq. (101) can be evaluated in the same
way as for G1,

Gcl
2 (r2, t2; r1, t1) =

∑

k

(

〈|ak|4〉 − 2〈|ak|2〉
2
)

+

|G1(0, 0; 0, 0)|2 + |G1(r2, t2; r1, t1)|2. (102)

Moreover, for Gaussian thermal light 〈|ak|4〉 = 2〈|ak|2〉2, so that the first
term of Eq. (102) drops out. In all other cases this contribution is negative so
that the “contrast” inG2(2, 1) for adjacent (r2, t2), (r1, t1) and distant argu-
ments is smaller than for thermal radiation. For thermal radiation, intensity
correlation measurements yield the same information as conventional first
order coherence experiments, e.g. using the Michelson interferometers.
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Figure 15. Optical intensity interferometer proposed and developed by Hanbury Brown
and Twiss to measure the angular diameter of stars. According to Hanbury Brown[42].

The optical analogue of the intensity interferometer seemed to be straight-
forward: Antennas and receivers will respectively be replaced by mirrors
and photodetectors, as sketched in Fig. 15. In principle, the theory is the
same for all wavelengths but the trouble of course was worrying about
photons. In the RF spectrum the energy flows rather smoothly whereas in
the optical region energy comes in “photon–bursts”, see Fig. 3. A correlator
(or coincidence counter) measures the combined absorption of photons at
different space time points (r2, t2) and (r1, t1). As a result, we have

G2(r2, t2; r1, t1) = 〈Ê(−)(r2, t2)Ê(−)(r1, t1)Ê(+)(r2, t2)Ê(+)(r1, t1)〉. (103)

Note, the sequence of operators matters, creation and destruction operators
are in “normal order” (creation operators left to the destruction operators).
Nevertheless, for thermal radiation, the classical result given by Eq. (102)
remains valid.

If one thinks in terms of photons one must accept that thermal photons
at two well separated detectors are correlated – they tend to to “arrive”
in pairs (“photon bunching”)! But how, if the photons are emitted at ran-
dom in a thermal source, can they appear in pairs at two well separated
detectors? What about the sacred number–phase uncertainty relation?

∆N̂∆Φ̂ ≥ 1. (104)
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Figure 16. Photon coincidences for single mode chaotic light and laser light. Coherence
time of the chaotic light depends on the speed v of the rotating ground glass disk.
According to Arecchi et al.[20].

Wouldn’t a photon number measurement destroy phase relations and, hence,
all interference phenomena? However, for an (intensity) interferometer the
absolute phase is not relevant, only the phase difference matters and this
difference is not touched by Eq. (104).

Eventually, this problem was settled by experiment which clearly shows
that photon bunching exists in thermal radiation [23, 24]. Later on, a well
functioning stellar interferometer was built in Australia. More on the ex-
citing scientific story about this instrument and its history can be found in
Hanbury Brown’s book[42].

Today, the photon bunching effect can be simply demonstrated with an
artificial “chaotic” source which synthesizes pseudothermal light by passing
laser radiation through a rotating ground glass disk with long adjustable
coherence times (“Martienssen lamp”)[25], see Fig. 16.

It is instructive to define a coincidence ratio

R =
C − Crand
Crand

=
(∆n)2− < n >

(< n >)2
, (105)

where C ∝ G2(1, 1) =< N̂(N̂ − 1) >. The number of random coincidences

is proportional to Crand = G2(2, 1) =< N̂ >2 when the separation of r2, t2,
r1, t1 is much larger than the coherence area/time.

Coherent states: (∆N)2 = n̄ R = 0,
thermal states: (∆N)2 = n̄(n̄+ 1) R = 1,
number states: (∆N)2 = 0 R = − 1

n .

Classical states have photon number distributions which are always broader
than a Poissonian, i.e., (∆N)2 ≥ n̄, hence, the correlation ratio is positive:
Classical states always show “photon bunching”. The α states as generated
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Figure 17. Single photon turnstile device. (A) Unnormalized second order correlation
function of a mode locked Ti:sapphire laser (FWHM=250 fs) and (B) a single quantum
dot excitonic ground state (1X) emission under pulsed excitation conditions (82MHz).
According to Michler et al.[30].

by an amplitude stabilized laser, represent the optimum classical state with
respect to photon fluctuations.

On the other hand, states which have less photon number fluctuations
than a Poissonian, e.g., the number states, show “antibunching”, i.e., the
photons prefer to “come” not too close, see Fig. 22. In particular, the single
photon state |n = 1 > is the most nonclassical state one can think of!
Obviously, photon bunching is not a “typical Bose property”.

The generation of nonclassical light (which still showed “photon bunch-
ing”) was first demonstrated in 1977 by Kimble, Dagenais, and Mandel[27];
the first clear evidence for antibunching, R ≈ 0, was presented by Diedrich
and Walther[28] in 1987, using a single Mg–Ion in a Paul–trap.

For a review about photon antibunching, see the article by Paul[29].
Presently, nonclassical photon states became attractive in semiconductor
optics in connection with quantum communication. For instance Michler et
al.[30] have developed a “Quantum dot single photon turnstile device”, see
Fig. 17.
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Figure 18. Time intervals used for the derivation of Pm(T ).

5.4. PHOTON COUNTING

The number of photons which a counter records in any interval of time
fluctuates randomly. In a simple counting experiment we may imagine that
the counter is exposed to the radiation field for a fixed time interval T .
After a time delay Tdel, which is long compared to the coherence time of
the light, the original experiment is repeated, and a second number of
counted photons is recorded and so on. The results can be expressed by
a probability distribution Pm(T ) for the counting of m photons during an
observation time T .

We consider a particular period of counting [t, t+T ] as shown in Fig. 18.
There are two ways in which m photons can be counted in the periods
between times t and t + dt. The probability that more than one photon
being counted during the time interval dt is proportional to (dt)2 and,
thus, neglegible.

Pm(t+ dt) = Pm(t) [1− p(t) dt] + Pm−1(t) p(t) dt (106)

Rearranging terms and using Pm(t+dt)−Pm(t) = Ṗm(t)dt+O(dt)2 we
obtain a chain of coupled differential equations

dPm(t)

dt
= ζI(t) [Pm−1(t)− Pm(t)] , (107)

P−1 = 0, P0(0) = 1, Pm(0) = 0 (m > 1), (108)

which can be solved by recursion.
The probability that no photon to be recorded during time t becomes

P ′0(t) = −ζ I(t)P0(t), (109)

P0(T ) = e−ζ Ī(T )T , (110)

Ī(T ) =
1

T

∫ T

0
I(t′) dt′. (111)

Ī(T ) is the mean intensity during the observation time T . The remaining
counting functions Pm(T ) can be obtained from Eq. (107), beginning with
m = 1 and proceeding to higher values. As a result, we obtain

Pm(T ) =

[

ζĪ(T )T
]m

m!
e−ζ Ī(T )T . (112)
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Equation (112) gives the count distribution obtained in a series of mea-
surements all beginning at the same time (t = 0), where the same time
duration T , and the same I(t) is implied. This is impossible in practice:
Counting periods run consecutively rather than simultaneously. Photon
measurements imply the absorption of photons so that a single photon can
be counted only once! The intensity Ī(T ) in general fluctuates for different
members of the ensemble and the measured photon count distribution is
an average of Pm(T ) over a large number of different starting times (which
are separated in time by a period much larger than the coherence time).

P̄m(T ) = 〈Pm(T )〉. (113)

A nice introduction to photon counting is still Loudon’s book[34].

5.4.1. Examples

a) Constant intensity (amplitude stabilized single mode laser).
I(t) = I0 is constant so that the quantity to be averaged is time–idependent.

P̄m(T ) = exp(−m̄)
m̄m

m!
, m̄ = ζI0T. (114)

This is a Poissonian distribution with a mean photon count number m̄, see
Fig. 19. This distribution has been already discussed in Section 4.4.3.

The fluctuations which occur for a beam of constant intensity are called
particle fluctuations. They are due to the discrete nature of the photoelec-
tric process in which energy can be removed from the light beam only in
whole quanta ~ω.

b) Chaotic (thermal) light, long time limit (T À tcoh).
Another important case for which the Poisson–distribution Eq. (114) holds,
follows from the fact that Ī(T ) can be constant even if I(t) is a fluctuating
quantity. This case holds for chaotic light (of arbitrary type) if the time of
measurement is much larger than the coherence time of the light, so that
all fluctuations are averaged out during a long time period.

c) Chaotic (thermal) light, short time limit (T ¿ tcoh).
The probability distribution for the instantaneous intensity of thermal light
is given by Eq. (29). With the usual ergodic hypothesis the time average in
Eq. (113) is converted to an ensemble average over the distribution p(I) =
exp(−I/Iav)/(πIav), Eq. (29), leading to

P̄m(T ) =

∫ ∞

0
p(I) Pm(T ) dI =

m̄m

[m̄+ 1]m+1 = bm. (115)

bm is the Bose–Einstein distribution function, see Fig. 20, which we have
already met in Section 4.4.5.
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Figure 19. Poisson form of the photon count distribution for light beams of constant
intensity (Single mode laser well above threshhold). According to Loudon[34].

Figure 20. Photon count distribution for chaotic (thermal) single mode light for m̄ = 4
and different counting times T . According to Loudon[34].
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1 3

4

2

Figure 21. Sketch of a beam slitter. Modes 1 and 2 are transformed into 3, 4.

The photon count distributions derived above are based on a semiclas-
sical approach where the intensity Ī(T ) is treated as a classical quantity.
The quantum mechanical formulation (in the Heisenberg picture) has to

take into account that the operators Ê(−)(r, t), Ê(+)(r, t) do not commute.
Formally, the result is similar to Eq. (112), but the evaluation is much more
laborious than in the semiclassical case. For coherent and thermal states
the count distributions have the same form, however, this is not true in
general. For details we refer to the book by Klauder and Sudarshan[37].

5.5. BEAM SPLITTERS

Optical components like lenses, mirrors, polarizers etc., are used in quantum
optics to transform one mode in another. For example, let us consider a
beam splitter which transforms an incoming wave beam with field E1 into a
transmitted and a reflected beam with fields E3, E4, respectively. However,
there is also a second possible input axis defined, such that E2 would produce
the output waves in the same place and propagating in the same direction
as E3 and E4 (e.g. as used in a Mach–Zehnder interferometer). The complex
amplitudes of the EMF transform according to

(

a3
a4

)

=

( √
1−R

√
R

−
√
R
√
1−R

)

(

a1
a2

)

. (116)

R is the (intensity) reflection coefficent. (Note, there is a phase jump of π
of the reflected beams). In a quantum treatment the complex amplitudes
will be replaced by destruction operators. In quantum optics, the case of
“no incident wave” refers to the vacuum state of that mode rather than to
“zero field”.

In quantum optics amplitudes aj become operators âj and Eq. (116)
represents a unitary basis transformation. A beam splitter does not “split”
photons, rather it acts as a random selector which divides the incident flow
of photons in a reflected and a transmitted one. As a consequence, the
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Figure 22. Change of photon statistics of an n photon state after passing a beam
splitter.(a) Coherent state, (b) n-photon state. According to Bachor[38].

photon statistics of the reflected/transmitted beams correspond to that of
the input beam after a random selection process has taken place. For a
coherent state with a Poissonian distribution, a random selection yields
again a Poissonian, hence a coherent state remains a coherent state after
reflection or transmission through a mirror, yet with a reduced value of α.

The situation may be different for states with a non–Poissonian photon
distribution. For an incident |n >–photon state the probability that k(≤ n)
photons are reflected (n− k being transmitted) becomes

p
(n)
k =

(

n

k

)

Rk (1−R)n−k, k = 0, 1, . . . n. (117)

The binominal coefficient arises from the indistinguishability of the photons.
Hence, an incident photon state with distribution pn transforms according
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to

prefk =
∑

n

pn

(

n

k

)

Rk (1−R)n−k, (118)

ptrk =
∑

n

pn

(

n

k

)

(1−R)k Rn−k. (119)

In addition to coherent states, thermal states likewise have the remarkable
property that the photon statistics remains unchanged when passing the
splitter (yet with a reduced mean photon number k̄ = (1−R)n̄, see Fig. 22).
For details see, e.g., Paul[32] or Bachor[38].

6. Outlook

Die ganzen Jahre bewusster Grübelei haben mich der Antwort der Frage
“Was sind Lichtquanten” nicht näher gebracht. Heute glaubt zwar jeder
Lump, er wisse es, aber er täuscht sich. . .

Literal translation:

All the years of willful pondering have not brought me any closer to the
answer to the question “what are light quanta”. Today every good–for–
nothing believes he should know it, but he is mistaken. . .

ALBERT EINSTEIN2

But, in contrast to Einstein, most of us have given up any hope for
objective realism. . .

For a discussion on conceptual difficulties and different interpretations
of Quantum Mechanics see Costa’s interdisciplinary article in this book.
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Solutions of the Problems

P1: Time dependent Schrödinger equation: ẋc = pc, ṗc = −ω2
0xx + f(t).

P2: w(t) = [1− κ exp(−2ıt)] / [1 + κ exp(−2ıt)], u(t) from normalization.
v(t) = ν/ [exp(ıt) + κ exp(−ıt)], κ, ν are constants.

P3: Use b̂ = µâ+ νâ†, Eq. (43), and cosh2 x− sinh2x = 1.
P4: Energies can be non-equidistant but must be multiples of a unit.
P5: Yes! Eq. (47) is a displaced oscillator. 〈N̂〉 =∑

k,σ |jk,σ|2/(2ε0~ω3
k).

P6: See Born and Wolf[41], p. 320.
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